
Microwave quantum memory at unit cooperativity

Patrick Hogan^{1,2}, Joseph Alexander¹, Jean-Baptiste Verstraete^{*1}, Benjamin Field³,
Mantas Simenas⁴, Gavin Dold^{1,5}, Oscar Kennedy¹, James O'sullivan¹, Christoph
Zollitsch¹, Eloïse Lafitte-Houssat^{6,7}, Philippe Goldner⁶, and John Morton^{1,2}

¹London Centre for Nanotechnology, University College London – London WC1H 0AH, United Kingdom

²Department of Electronic and Electrical Engineering, UCL, London WC1E 7JE – United Kingdom

³Centre for Engineered Quantum Systems, School of Physics, University of Sydney, NSW 2006 – Austria

⁴Faculty of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius – Lithuania

⁵National Physical Laboratory – Hampton Road, Teddington, TW11 0LW, United Kingdom

⁶Université PSL, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris – Université PSL – France

⁷Thales Research and Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau – Thales Research and Technology, 1 Av. Augustin Fresnel, F-91767 Palaiseau (France) – France

Abstract

Spin ensembles coupled to superconducting resonators represent a promising platform for microwave quantum memory implementation. An appropriate coupling between the spin ensemble and the resonator is required to realise efficient state transfer. This efficiency is usually characterized by the cooperativity C and maximized for $C=1$ (1). In this work, we use an NbN spiral superconducting resonator and 171Yb spins in a YSO crystal (2) to tune to unit cooperativity for high and low power input signals. The cooperativity is measured under real conditions of quantum memory protocols (3). Subsequently, we delve into round-trip efficiency calculations and discuss the ways to reach high efficiency at zero field: change of host crystal to CaWO₄ (4) for longer relaxation times, optimal coupling to resonator, and suppression of unwanted emissions. (1) M Afzelius et al 2013 New J. Phys. 15 065008
(2) J Alexander 2023, Doctoral thesis.
(3) J O'Sullivan et al 2022 Phys. Rev. X. 12, 041014
(4) A Tiranov et al 2025 arXiv:2504.01592

^{*}Speaker